

The SPOT[™] BOOST[™] BT 2000 back illuminated EMCCD has single photon detection capability without an image intensifier, combined with greater than 90% QE of a back-illuminated sensor. Containing a 512 x 512 L3Vision[™] Frame Transfer CCD sensor from E2V Technologies, it enables charge to be multiplied on the sensor before it is read out, while utilizing the full QE performance of the CCD sensor. The EMCCD gain of the camera can be varied from unity up to a thousand times directly through the software. The system offers up to 10 MHz pixel readout rate, both EMCCD and conventional amplifier outputs and benefits from minimized dark current with unequaled thermoelectric cooling down to –100° C.

CAMERA SPECS

• EMCCD Technology

• True Linear gain

> 90% QE back-illuminated sensor

• Variable readout rates up to 10 MHz

Vacuum sealed cooling

• Thermoelectric cooling to -100° C possible

• 512 x 512 Frame Transfer sensor

• High dynamic range

• Built-in C-mount compatible shutter

EM protect

CAMERA OVERVIEW

Active Pixels	512 x 512		
Pixel Size (WxH; μm)	16 x 16		
Image Area (mm)	8.2 x 8.2		
Active Area pixel well depth (e-, typical)	200,000		
Gain Register pixel well depth (e-, typical)	800,000 ³		
Max Readout Rate (MHz)	10		
Frame Rate (frames per sec)	35 to >500		
Read Noise (e-)	<1 EM gain < 50 conventional @10 MHz		

Ultimate in sensitivity from EMCCD gain - even single photon signals are amplified above the noise floor.

Control EMCCD gain with a linear, quantified scale – ask for a gain value and get it corrected to the CCD temperature.

Maximum possible photon collection efficiency

Quantitative accuracy at all speeds

Critical for sustained vacuum integrity to maintain unequalled cooling and QE performance

Critical for elimination of dark current detection limit - an EMCCD must!

High resolution, large field of view and fast, shutterless imaging

Extended sensor dynamic range (readout speed dependent) and matched digitization for quantization of dim and bright signals

Easy means to record control dark images – excellent for optimization of experimental set-up

EM gain register is protected from accidental damage using built-in algorithms. Also limits long-term gain aging.

SYSTEM CHARACTERISTICS

Peak QE	>92%
Pixel Readout Rate (MHz) Electron Multiplying Amplifier Conventional Amplifier	10, 5, 3, 1 3 and 1
Digitization @ 10, 5, 3 & 1 MHz readout rate	True 14-bit (16-bit available-S Boost model BT-2001)
Vertical Clock Speed (µs)	0.3 to 3.3 (variable)
Linear Electron Multiplier Gain (software controlled)	1 – 1000 times
Non-Linearity	<1% 10101010100011010
Triggering	Internal, external, external sta
Camera window type	Single window with double-sid

ed

AR coating-standard for BV model

a powerful computer is recommended, e.g:

• 3 GHz Pentium (or better) • 1GB RAM

• 10,000 rpm SATA hard drive, preferred for extended kinetic series

Power Requirements 8:

0.6A @ +12V | 0.3A @ -12V | 3.0A @ +5V

Also:

• PCI-compatible computer

· PCI slot must have bus master capability

· Available auxiliary internal power connector

• 32 Mbytes free hard disc space

Operating System:

Windows 2000 or XP operating system

Quantum Efficiency at 575nm and –20° C⁹

500

600

Wavelength (nm)

700

800

900

1000

DIAGNOSTIC

FULL FRAME RATE 10

300

400

0

200

MAX FRAMES PER SEC¹¹

Array size	512 x 512	256 x 256	128 x 128	512 H x 100 V
Binning	(full frame)			0101010100011
1x1	35	68	132	168
2x1	68	132	248	313
2x2	68	132	248	0 31300011010
4x1	131	246 0001	439 0101	01549 10100011
4x4	131	246	439 01010	549 1010
			and the second se	

